EMISENS Road traffic related emissions model

R. Le Frioux[†]

2024-06-05

METROPOLIS2 Online Course Spring 2024

[†] CY Cergy Paris Université and ThEMA, Cergy, France

METRO-TRACE

METRO-TRACE (METROPOLIS - Traffic Related Air pollution Costs Evaluation) is an integrated chain of models for population exposure to road traffic pollution (Le Frioux, de Palma, and Blond; 2023).

METRO-TRACE (METROPOLIS - Traffic Related Air pollution Costs Evaluation) is an integrated chain of models for population exposure to road traffic pollution (Le Frioux, de Palma, and Blond; 2023). This chain is designed as follows:

METRO-TRACE (METROPOLIS - Traffic Related Air pollution Costs Evaluation) is an integrated chain of models for population exposure to road traffic pollution (Le Frioux, de Palma, and Blond; 2023). This chain is designed as follows:

EMISENS is an emission model:

• It is a static traffic situation model.

- It is a static traffic situation model.
- It is based on the EMEP-EA reglementation.

- It is a static traffic situation model.
- It is based on the EMEP-EA reglementation.
- It as the ability to compute emission for NO_x, PM_{2.5}, CO, and CO₂, as well as fuel consumption.

- It is a static traffic situation model.
- It is based on the EMEP-EA reglementation.
- It as the ability to compute emission for NO_x, PM_{2.5}, CO, and CO₂, as well as fuel consumption.
- It as the ability of computing hot, cold, and non-exhaust emissions.

Outputs:

• The outputs of EMISENS are given at the link level, for each agent (e.g one line per agent per link).

Outputs:

• The outputs of EMISENS are given at the link level, for each agent (e.g one line per agent per link).

Inputs:

- Fleet composition: This file stores the information about the composition of the National fleet generally based on European Standard
- COPERT Database: This file stores the emission factor for each types of vehicle (fuel types, segment, European standards)

In case of Île-de-France and France, we provide a file that can be used without having to make use further information than METROPOLIS2

In case of \hat{I} le-de-France and France, we provide a file that can be used without having to make use further information than METROPOLIS2 **FR_EF_file.csv:**

It contains the average weighted emission factors for the different pollutants k for each type of vehicle v (Vignette Crit'air for France)

In case of \hat{I} le-de-France and France, we provide a file that can be used without having to make use further information than METROPOLIS2 **FR_EF_file.csv:**

It contains the average weighted emission factors for the different pollutants k for each type of vehicle v (Vignette Crit'air for France)

$$\overline{e_{k,v}^{hot}} = \sum_{s,E,f} \omega_{s,E,f} e_{k,s,E,f}^{hot}$$

In case of Île-de-France and France, we provide a file that can be used without having to make use further information than METROPOLIS2 **FR_EF_file.csv:**

It contains the average weighted emission factors for the different pollutants k for each type of vehicle v (Vignette Crit'air for France)

$$\overline{e_{k,v}^{hot}} = \sum_{s,E,f} \omega_{s,E,f} e_{k,s,E,f}^{hot}$$

where:

 ω_{s,E,f} are the shares of vehicle of segment s, with European standard E and fuel type f among all vehicles with type v

In case of Île-de-France and France, we provide a file that can be used without having to make use further information than METROPOLIS2 **FR_EF_file.csv:**

It contains the average weighted emission factors for the different pollutants k for each type of vehicle v (Vignette Crit'air for France)

$$\overline{e_{k,v}^{hot}} = \sum_{s,E,f} \omega_{s,E,f} e_{k,s,E,f}^{hot}$$

where:

- ω_{s,E,f} are the shares of vehicle of segment s, with European standard E and fuel type f among all vehicles with type v
- $e_{k,s,E,f}^{hot}$ is the emission factor of vehicle of segment s, with European standard E and fuel type f for pollutant k.

In case of Île-de-France and France, we provide a file that can be used without having to make use further information than METROPOLIS2 **FR_EF_file.csv:**

It contains the average weighted emission factors for the different pollutants k for each type of vehicle v (Vignette Crit'air for France)

$$\overline{e_{k,v}^{hot}} = \sum_{s,E,f} \omega_{s,E,f} e_{k,s,E,f}^{hot}$$

where:

- ω_{s,E,f} are the shares of vehicle of segment s, with European standard E and fuel type f among all vehicles with type v
- *e*^{hot}_{k,s,E,f} is the emission factor of vehicle of segment *s*, with European standard *E* and fuel type *f* for pollutant *k*.

Recall: The types of vehicle are assign to agent when creating the population (see session 6)

EMISENS

EMISENS: Emissions computation

Hot emission of pollutant k emitted by agent n with vehicle of Crit'air l entering on directed road r_i at time t is given by:

$$E_k^{hot}(r_i, t, n) = L(r_i) \times \overline{e_k^{hot}}[S_n(r_i, t), v_n]$$

EMISENS: Emissions computation

Hot emission of pollutant k emitted by agent n with vehicle of Crit'air l entering on directed road r_i at time t is given by:

$$E_k^{hot}(r_i, t, n) = L(r_i) \times \overline{e_k^{hot}}[S_n(r_i, t), v_n]$$

where:

• $L(r_i)$ is the length of the directed road r_i

EMISENS: Emissions computation

Hot emission of pollutant k emitted by agent n with vehicle of Crit'air l entering on directed road r_i at time t is given by:

$$E_k^{hot}(r_i, t, n) = L(r_i) \times \overline{e_k^{hot}}[S_n(r_i, t), v_n]$$

where:

- $L(r_i)$ is the length of the directed road r_i
- $S_n(r_i, t)$ is the average speed of agent *n* on directed road r_i for entering at time *t*,

Hot emission of pollutant k emitted by agent n with vehicle of Crit'air l entering on directed road r_i at time t is given by:

$$E_k^{hot}(r_i, t, n) = L(r_i) \times \overline{e_k^{hot}}[S_n(r_i, t), v_n]$$

where:

- $L(r_i)$ is the length of the directed road r_i
- $S_n(r_i, t)$ is the average speed of agent *n* on directed road r_i for entering at time *t*,
- $e_k^{hot}[., v_n]$ is the weighted average hot emission factor of vehicle with of type v of agent n according to its average speed.

Hot emission of pollutant k emitted by agent n with vehicle of Crit'air l entering on directed road r_i at time t is given by:

$$E_k^{hot}(r_i, t, n) = L(r_i) \times \overline{e_k^{hot}}[S_n(r_i, t), v_n]$$

where:

- $L(r_i)$ is the length of the directed road r_i
- $S_n(r_i, t)$ is the average speed of agent *n* on directed road r_i for entering at time *t*,
- $e_k^{hot}[., v_n]$ is the weighted average hot emission factor of vehicle with of type v of agent n according to its average speed.

Remark: Average speed is equal to the time to cross the road divided by its length and it is agent specific

Cold Emissions:

There are automatically computed only for the first kilometers of each trips in order to take into account the excess of emissions generated by cold engine.

Cold Emissions:

There are automatically computed only for the first kilometers of each trips in order to take into account the excess of emissions generated by cold engine.

Non-exhaust emissions:

There are automatically computed for $PM_{2.5}$. They represent the emission from tyre wear, brake wear and road abrasion (e.g electric vehicle do not have null emissions)

romuald.lefrioux18@gmail.com

Vignette Crit'air	Fuel types	EURO Standard
Crit'air 1	Petrol	EURO 5 & EURO 6
Crit'air 2	Petrol	EURO 4
Crit'air 2	Diesel	EURO 5 & EURO 6
Crit'air 3	Petrol	EURO 2 & EURO 3
Crit'air 3	Diesel	EURO 4
Crit'air 4	Diesel	EURO 3
Crit'air 5	Diesel	EURO 2
Not classified	Petrol	EURO 1
Not classified	Diesel	EURO 1

 R. Le Frioux, A. de Palma, and N. Blond. Assessing the Economic Costs of Road Traffic-Related Air Pollution in La Reunion. Tech. rep. THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise, 2023.