For additional details and references on what is covered during this session, refer to the documentation
https://docs.metropolis.lucasjavaudin.com/getting_started/input/agents.htmlparameters.json
file:
{
"input_files": {
"agents": "agents.csv",
"alternatives": "alts.csv"
},
"output_directory": "output",
"max_iterations": 1,
"period": [0.0, 3600.0],
"saving_format": "CSV"
}
File agents.csv
:
agent_id
= 1,2,3File alts.csv
agent_id
= 1,2,3alt_id
= 1,1,1,2,2,2agent_results.csv
File alts.csv
constant_utility
= 1,1,1,2,2,2agent_results.csv
File agents.csv
alt_choice.type
= Deterministicagent_results.csv
File agents.csv
alt_choice.type
= Logitalt_choice.u
= RAND()alt_choice.mu
= 1agent_results.csv
{
"input_files": {
"agents": "agents.csv",
"alternatives": "alts.csv",
"trips": "trips.csv"
},
"output_directory": "output",
"max_iterations": 1,
"period": [0.0, 3600.0],
"saving_format": "CSV"
}
File alts.csv
:
dt_choice.type
= Constantdt_choice.departure_time
= 50File trips.csv
:
agent_id
= 1,2,3alt_id
= 2,2,2trip_id
= 1,1,1class.type
= Virtualclass.travel_time
= 100agent_results.csv
constant_utility
travel_utility.two
, travel_utility.three
and travel_utility.four
can be use for a polynom of up to degree 4File trips.csv
:
travel_utility.one
= -0.01,-0.01,-0.01agent_results.csv
trip_results.csv
stopping_time
variable can be used to add a delay between two trips (this can represent the activity duration)File trips.csv
:
agent_id
= 1,2,3,1,2,3alt_id
= 2,2,2,2,2,2trip_id
= 1,1,1,2,2,2class.type
= Virtualclass.travel_time
= 100,100,100,20,20,20travel_utility.one
= -0.01stopping_time
= 30,30,30,,,agent_results.csv
and trip_results.csv
File alts.csv
:
dt_choice.type
= Continuousdt_choice.model.type
= Logitdt_choice.model.u
= RAND()dt_choice.model.mu
= 1agent_results.csv
utility
: Simulated utility, based on the selected alternative $j$ and departure time $\tau$: $V^{\text{sim}}_{j}(\tau)$
alt_expected_utility
: Expected utility of the departure-time choice of the selected alternative $j$: $\mathbb{E}_{\varepsilon}[\max_{\tau} U_j(\tau)]$
expected_utility
: Expected utility of the alternative choice: $\mathbb{E}_{\varepsilon}[\max_{j} U_j]$
File trips.csv
:
schedule_utility.type
= AlphaBetaGammaschedule_utility.tstar
= 1800schedule_utility.beta
= 0.005schedule_utility.gamma
= 0.02trip_results.csv